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(57) ABSTRACT

A generated-clock checker compares timing definitions
against a register transfer level description of the design using
formal methods. The generated-clock checker derives gener-
ated-clock timing waveform models from the timing defini-
tions, derives generated-clock waveform models from the
register level design and then compares the waveform models
using formal methods.
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1
METHOD AND APPARATUS USING FORMAL
METHODS FOR CHECKING
GENERATED-CLOCK TIMING DEFINITIONS

TECHNICAL FIELD

This invention relates to the field of integrated circuits
design timing verification and in particular to verification of
clock timing definitions specified by a designer as part of the
design constraints of an integrated circuit design. More par-
ticularly the invention relates to a system, method and com-
puter program product for a generated-clock timing verifica-
tion approach that uses formal methods.

BACKGROUND ART

Electronic chip designers use a variety of computer-aided
design tools. After creating a register-transfer level design
they typically use a static timing analysis tool to check for
timing issues. The static timing analysis tool can predict setup
and hold violations, give a performance estimates and indi-
cate other timing issues. The static timing analysis tool
requires the user to supply clock timing information. Chip
designers typically specify the clock timing information in a
format such as the Synopsys Design Constraint (SDC) lan-
guage. If a user makes a mistake in the clock timing informa-
tion the final chip may not work.

Modern electronic chip designers usually try to minimize
the power requirement of the chips they develop. Designs
contain many registers and each register value transition con-
sumes power. Designers try to reduce the power consumption
by reducing the frequency of register transitions. Power sav-
ing techniques include: a) running parts of the design at a
lower clock frequencies; b) dynamically disabling the clock
to a part of the design when the associated function is not
required; and ¢) dynamically switching between clocks of
different frequency. The design will typically contain one or
more master clocks and multiple lower-frequency generated-
clocks derived from the master clocks.

Atrenta’s Spyglass Clk_Gen23 rule, as described in its
Spyglass User Guide, checks structurally whether generated-
clocks have been defined correctly and reports some incor-
rectly defined generated-clocks. It looks for specific compo-
nents connected in specific ways. Since it performs structural
checks it can handle only a limited number of logic structures.
It is impossible to verify all forms of generated-clocks struc-
turally as the involved logic can be complex and can have
many different patterns. For example, a simple divide_by_ 2
generated-clock can be generated in many ways.

SUMMARY DISCLOSURE

A generated-clock checker software tool implemented in a
programmable computing system compares, using formal
methods, user-specified timing definitions against a register
transfer level description of the integrated circuit design. A
generated clock is a clock signal derived from a primary clock
signal by using sequential and/or combinational logic.
Accordingly, the generated-clock checker derives respective
sets of generated clock timing waveform models both from
the timing definitions and also from the register level design,
and then compares those two sets of waveform models using
formal methods. Any discrepancies are reported to the user
(i.e. circuit designer).

The generated-clock checker receives a design file, user-
specified clock timing definitions, and (optionally) reset con-
ditions defining initial register states for the circuit design.
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For each generated clock in the timing definition, it identifies
from the design file all possible logic paths from the master
clock to that generated clock, ignoring unnecessary combi-
national logic (e.g., including only checking cases where the
clock signal in the logic path is enabled), while keeping track
of'inversions in the path, as well as the effect on clock timing
of register inputs and register outputs. Then for each of those
identified logic paths, it matches a formal waveform model
against timing definition statements, e.g. by generating a
finite state machine (FSM) model for that path and generated
clock and comparing the FSM against the timing definition
statements, as by using a satisfiability checker in the tool. Any
mismatched or missing waveform and/or timing definitions
are reported and may be displayed for user visualization and
any necessary correction of the timing definitions.

Formal methods rely on mathematically based techniques
for analysis and verification. In the field of electronic design
verification formal methods offer a more rigorous approach
compared to ad hoc structural techniques. Formal verification
methods are used to prove theorems, compare models, check
logic equivalence and check logic assertions. One type of
formal verification method is to compare canonical descrip-
tions such as binary decision diagrams. Another type of for-
mal verification uses a satisfiability checker. A satisfiability
checker tests if there are a set of variable values that make a
Boolean logic expression true.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the waveforms associated with different fla-
vors of a simple divide-by-two generated-clock.

FIG. 2 shows a sample register level design with a divide-
by-2 generated-clock using multiplexers and a divide-by-1
generated-clock using combinational logic.

FIG. 3 shows a flowchart outlining the steps of the gener-
ated-clock checker.

FIG. 4 shows a block diagram of a generated-clock
checker.

FIG. 5 shows combinational logic that the generated-clock
checker ignores.

DETAILED DESCRIPTION

The generated-clock checker (GCC) checks user-specified
clock timing definitions against a register transfer level
design. The GCC reads the user-specified clock timing defi-
nitions, the corresponding register transfer level design and
reset conditions. The reset conditions define the initial values
of the registers in the design. The GCC analyzes the design
and generates a list of logic paths from master clocks to
generated-clocks. The GCC keeps track of clock inversions
but otherwise prunes out combinational logic that does not
affect the clock waveform. The GCC ignores logic paths that
the user has specified to ignore. The GCC constructs wave-
form models from the user-specified clock timing definitions
and constructs waveform models from the register transfer
level design. The GCC uses formal methods to compare the
two sets of waveforms. The GCC reports matched, mis-
matched and missing generated-clock definitions. The GCC
reports problem design paths giving the master clock name
and generated-clock name. The GCC shows a schematic
highlighting the problematic logic paths in the design. The
GCC shows actual and expected waveforms.

FIG. 1 is a diagram 100 showing two simple divide-by-2
generated-clock circuits and the associated waveforms. In the
upper circuit master clock CLK 110 drives the clock pin of
register 140. The inverted register output 130 feeds back to
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the data input of register 140. A generated-clock signal can be
taken from GC1 120 and from GC3 130. In the lower circuit
the master clock signal CLLK 120 drives an inverter 150 before
driving the clock pin of register 145. Generated-clock signals
can be taken from GC2 125 or from GC4 135. The waveforms
for CLK, GC1, GC2, GC3 and GC4 are shown at 160, 161,
162, 163, and 164 respectively. Waveforms GC1, GC2, GC3
and GC4 all have half the frequency of CLK. The CLK
waveform 160 has rising edges at times 1, 3, 5, etc. The GC1
waveform 161 has rising edges at times 1, 5, 9, etc. The GC2
waveform 162 has rising edge times at 2, 6, 10, etc.

Using the SDC language a logic designer should define
GC1, GC2, GC3 and GC4 using the following respective
statements:

create_generated_clock -source CLK -divide_by 2 [get

pins FF1/Q]

create_generated_clock -source CLK -edges {2 4 6} [get

pins FF1/Q]

create_generated_clock -source CLK -divide_by 2 [get

pins FF1/Q]-invert

create_generated_clock -source CLK -edges {4 6 8} [get

pins FF1/Q]

The -edges argument specifies the times of the first three
rising, falling and rising waveform edges with respect to the
edge of the master clock. The -edges argument can be
replaced with a -divide_by N argument if the first rising edge
of the generated clock matches the first rising edge of the
master clock. The -invert argument indicates that the wave-
form is inverted. The generated-clock statement frequently
uses a “get pins” argument or a “‘get ports” argument to
specify the source and/or output of the generated clock. The
“get pins” argument specifies component pins and the “get
ports” argument specifies ports. It is common for inexperi-
enced logic designers to make a mistake in specifying the
generated-clock timing.

FIG. 2 shows a sample design 200. The master clock signal
cp 210 drives a buffer 220 and an inverter 221. A multiplexer
(MUX) 230 selects between the output of the buffer 220 and
the inverter 221. The MUX 230 drives the clock pins of
registers 240 and 241. Registers 240 and 241 both have feed-
back from their inverted output causing a clock division by 2.
The MUX 250 is driven by the output of register 240 and the
inverted output of register 241. The MUX drives the gener-
ated-clock q 280. The master clock signal cpl 213 drives
buffer 260 which drives inverter 270 which drives generated-
clock q1 281.

The MUX 230 is controlled by a select signal 211 and
MUX 250 is controlled by select signal 212. The logic
designer usually wants a static timing analysis tool to check
for timing violations using all possible sources of each MUX.
The logic designer must normally define separate generated-
clock waveforms for each MUX source. There are four logic
paths from the master clock cp 210 to the generated-clock q
280. MUXes 230 and 250 select one of the four logic paths.
The four logic paths correspond to the four logic paths dis-
cussed in FIG. 1. A logic designer can choose to ignore an
input to a MUX by specifying a “set_case_analysis” SDC
statement.

Suppose a logic designer provides the following SDC
description:

create_clock -name CLK -period 10 cp

create_clock -name CLK1 -period 12 cpl

create_generated_clock -name GCLK -divide_by 2 [get_

ports cp]

[get_ports q]-add -master_clock CLK
create_generated_clock -name GCLK1 -divide_by 2 [get_

ports cp]
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[get_ports q]-add -master_clock CLK -invert

create_generated_clock -name GCLK2 -edges {1 3

5}-source
[get_ports cp]
[get_ports q]-add -master_clock CLK

create_generated_clock -name GCLK3 -edges {2 4

6}-source
[get_ports cp]
[get_ports q]-add -master_clock CLK
create_generated_clock -name GCLK4 -divide_by 1 [get_
ports gl]-source [get_ports cpl]
The create_clock statements define master clocks and specify
the periods of their waveforms.

The GCC checks the SDC description against the sample
design 200. It reports that generated-clocks GCLK, GCLK1,
GCLK2 and GCLK3 all have correct SDC definitions. The
GCC reports an error in the SDC definition of GCLK4
because the design has an inverter 270 between the master
clock cpl 213 and the generated-clock q 281. The GCC
reports that there is a missing generated-clock statement for
generated-clock q 280 from master clock cp 210. The GCC
specifies the missing generated-clock is for the path from
master clock cp 210, inverter 221, register 241 and generated-
clock q 280. The missing generated-clock waveform has
edges {4 6 8}. The SDC definitions for GCLK and GCLK2
define the same waveform.

FIG. 3 is an exemplary and non-limiting flowchart 300 for
checking generated-clock timing definitions. In 5310 the
GCC receives the design file, the user-specified timing defi-
nition and the reset conditions. In S320 the GCC treats the
next generated clock and creates a list of all possible logic
paths from the master clock to that generated-clock. On the
first iteration the GCC treats the first generated-clock. On
subsequent iterations the GCC selects the next generated
clock. The GCC selects the generated-clock by looking at
create_generated_clock statements in the timing definitions.
In the above example there are two generated clocks specified
as arguments to “get ports”, namely q and ql. When con-
structing the logic paths the GCC ignores unnecessary com-
binational logic. For example the GCC ignores AND gates
with a clock input and a combinational enable signal. Static
timing analysis need only check the case when the clock
signal is enabled. The GCC ignores logic paths that the user
specifies to be ignored. For example if the user specifies a
set_case_analysis SDC statement stating that only the first
input of a MUX should be consider then the GCC will ignore
the other MUX inputs. When constructing the logic path the
GCC keeps track of inversions and keeps track of register
input and register output pins. FIG. 5 shows a potential logic
path. The GCC tracks inversions but otherwise prunes out
combinational logic block 520. The GCC keeps track of logic
in blocks 530, 540 and 550.

In S330 the GCC constructs finite-state-machine (FSM)
models for the current generated clock. For each user-speci-
fied, generated-clock timing definition of the current gener-
ated-clock the GCC constructs a FSM corresponding to the
specified waveform. For the next logic path of the design
identified in S320 the GCC generates a FSM. On the first
iteration of S330 the GCC treats the first logic path identified
in S320. On subsequent iterations the GCC treats the next
logic path identified in S320. The GCC compares the FSM
from the current logic path of the design against the FSMs
from the user-specified timing definition. The GCC compares
FSMs using formal methods. In one embodiment the GCC
uses a satisfiability checker to compare the FSMs. In S340 the
GCC reports matching waveforms, mismatched waveforms
and missing waveforms. If the GCC finds one unmatched
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design FSM and one unmatched user-specified, timing defi-
nition FSM for the current generated clock the GCC will
report that that the corresponding design path does not match
the corresponding timing definition. In S350 the GCC checks
if there are more logic paths to treat. If there are more logic
paths the GCC loops back to S330, otherwise the GCC pro-
ceeds to S360. In S360 the GCC checks if there are more
generated clocks to treat. If there are more generated clocks
the GCC loops back to S320, otherwise the GCC exits.

FIG. 4 is an exemplary and non-limiting diagram 400
showing a generated-clock checker (GCC) 420. The GCC
420 runs as an application program on a central processing
unit (CPU). In one embodiment the GCC is embedded in an
application program that makes multiple checks. The GCC
420 interacts with a logic designer through an input device,
430 and a display, 440. The GCC 420 displays generated-
clock checking results on the display, 440. A logic designer
specifies GCC inputs, starts the GCC and views results using
the input device, 430. A logic designer views a list of gener-
ated-clock issues on the display 440. Using the input device
430 the logic designer can request actual and user-defined
waveforms and request a schematic showing a problematic
logic path in the design. The GCC 420 reads a timing defini-
tion 410. In one embodiment the timing definition is con-
tained in a file and uses the SDC language to define master
clock and generated-clock waveforms. In another embodi-
ment the GCC prompts the user to enter timing definitions.
The GCC 420 reads a register transfer level design 450. The
GCC 420 reads reset conditions 460 to determine the initial
values of the registers in the register transfer level design 450.
Many designs have a reset signal that drives a reset pin on the
registers. The logic designer specifies a value to drive the reset
line. The value on the reset line determines whether the reg-
ister will be preset to O or 1. In one embodiment the GCC 420
embeds or interacts with a satisfiability checker 470. The
satisfiability checker 470 verifies logic hypotheses. In one
embodiment the GCC 420 stores the generated-clock check-
ing results in a file as a report 480.

FIG. 5 shows a possible logic path from master clock c1
510 to generated-clock gc1 560. The master clock signal c1
510 passes through combinational logic 520, sequential logic
530, combinational logic 540, and sequential logic 550. The
clock generation logic is contained in sequential logic 530,
combinational logic 540, and sequential logic 550. The com-
binational logic block 520 does not modify the clock wave-
form unless it inverts the clock signal.

The embodiments disclosed herein can be implemented as
hardware, firmware, software, or any combination thereof.
Moreover, the software is preferably implemented as an
application program tangibly embodied on a program storage
unit or computer readable medium. The application program
may be uploaded to, and executed by, a machine comprising
any suitable architecture. Preferably, the machine is imple-
mented on a computer platform having hardware such as one
or more central processing units (“CPUs”), a memory, and
input/output interfaces. The computer platform may also
include an operating system and microinstruction code. The
various processes and functions described herein may be
either part of the microinstruction code or part of the appli-
cation program, or any combination thereof, which may be
executed by a CPU, whether or not such computer or proces-
sor is explicitly shown. In addition, various other peripheral
units may be connected to the computer platform such as an
additional data storage unit and a printing unit. Furthermore,
a non-transitory computer readable medium is any computer
readable medium except for a transitory propagating signal.
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What is claimed is:

1. A method implemented as a generated-clock checker
tool in a programmable computing system for checking tim-
ing definitions of generated-clocks against a register-level
design for an integrated circuit, the method comprising:

constructing waveform models from both user-specified

timing definitions and a register-level design for each
generated clock, by considering all logic paths from a
master clock to each generated-clock, and keeping track
of any inversions in a logic path, while ignoring any
combinational logic unrelated to clock generation, and
generating finite state machines to represent the wave-
form models;

comparing, using formal methods, the two sets of con-

structed waveform models obtained from the timing
definitions and the register-level design, by using a sat-
isfiability checker to compare the finite state machines;
and

reporting, by using the programmable computing system,

any discrepancies found between the two sets of wave-
forms.

2. The method as in claim 1, wherein ignoring combina-
tional logic assumes only cases where a clock signal is
enabled in the considered logic path.

3. The method as in claim 1, when the constructing of the
waveform models further ignores any logic paths that a user
has indicated.

4. The method as in claim 1, wherein the considering of all
logic paths also keeps track of register inputs and outputs.

5. The method as in claim 1, wherein the user specifies reset
conditions that define initial values of registers in the design.

6. The method as in claim 1, wherein the generated-clock
checker reports any mismatched generated-clock timing defi-
nitions.

7. The method as in claim 1, wherein the generated-clock
checker reports any missing generated-clock timing defini-
tions.

8. The method as in claim 1, wherein reporting any wave-
form discrepancies includes:

displaying actual and expected waveforms and the related

logic path between the master clock and the generated-
clock.
9. A generated-clock checker software tool stored on a
non-transitory storage media and running on a programmed
computer for checking user-specified timing definitions of
generated-clocks against a register-level design file for an
integrated circuit, wherein the computer when running the
generated-clock checker:
accepts a timing definition file and a register-level design
file from a user input interface or memory access;

constructs sets of waveform models of each generated-
clock both from the timing definition file and from the
design file, by considering all logic paths from a master
clock to each generated-clock, and keeping track of any
inversions in a logic path, while ignoring any combina-
tional logic unrelated to clock generation and generating
finite state machines to represent the waveform models;

compares the two constructed sets of waveforms using
formal methods, by using a satisfiability checker to com-
pare the finite state machines; and

reports any discrepancies between the sets of waveforms.

10. The software tool running on a programmed computer
as in claim 9, wherein ignoring combinational logic assumes
only cases where a clock signal is enabled in the considered
logic path.
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11. The software tool running on a programmed computer
as in claim 9, when the constructing of the waveform models
further ignores any logic paths that a user has indicated.

12. The software tool running on a programmed computer
as in claim 9, wherein the considering of all logic paths also 5
keeps track of register inputs and outputs.

13. The software tool running on a programmed computer
as in claim 9, wherein the user specifies reset conditions that
define initial values of registers in the design.

14. The software tool running on a programmed computer 10
as in claim 9, wherein the generated-clock checker reports
any mismatched generated-clock timing definitions.

15. The software tool running on a programmed computer
as in claim 9, wherein the generated-clock checker reports
any missing generated-clock timing definitions. 15

16. The software tool running on a programmed computer
as in claim 9, wherein reporting any waveform discrepancies
includes:

displaying actual and expected waveforms and the related

logic path between the master clock and the generated- 20
clock.



